Assignment 5

Coverage: 15.6, 15.7 in Text.
Exercises: 15.6. no $9,13,19,23$. 15.7. no. $14,15,19,26,34,37,42,45,55,59,76$.
Submit 15.7. no. 14, 19, 37, 42, 59, by Feb 21, 2023.

Supplementary Problems

1. Let Ω be the bullet-shaped solid bounded above by the upper side of $x^{2}+y^{2}+(z-2)^{2}=1$, below by the $x y$-plane, and the cylinder $x^{2}+y^{2}=1$ on the side. Express the triple integral of a function f over Ω in two ways: $d \rho d \varphi d \theta$ and $d z d r d \theta$.
2. Let D be a region in the plane which is symmetric with respect to the origin, that is, $(x, y) \in D$ if and only if $(-x,-y) \in D$. Show that

$$
\iint_{D} f(x, y) d A(x, y)=0
$$

when f is odd, that is, $f(-x,-y)=-f(x, y)$ in D. Suggestion: Convert to polar coordinates.

